TEST STAND FOR **GEAR**

TEST STAND FOR GEAR

September 2007 Etienne Bernot - Jean Luc Mathey

Published by A4 Company

8 rue du Fromenteau Z.A. Les Hauts des Vignes 91940 Gometz le Châtel Tél.: 01 64 86 41 00 - Fax.: 01 64 46 31 19 www.a4.fr

SUMMARY OF RECORD

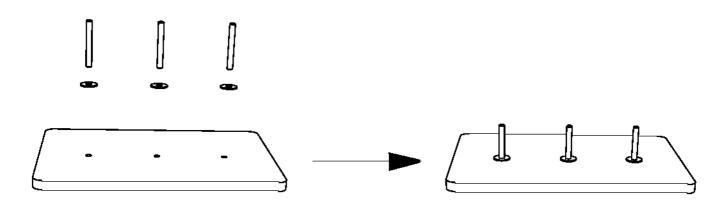
Test Stand preparation	01
Assembly drawing	02
Exercises on the gear test stand	
Correcting	

CDROM

This project's CDRom is available in the A4 Company catalogue (ref "CD-BE1"). **It contains:**

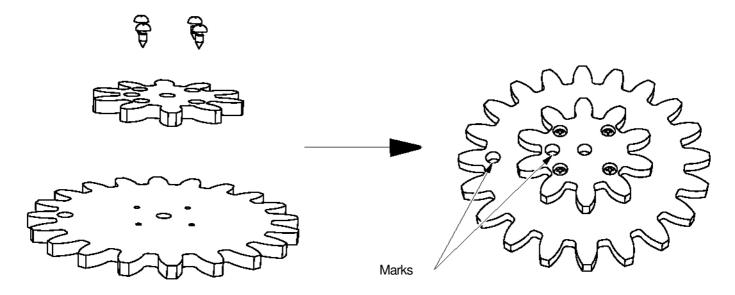
- The FreeHand version record (modifiable with this software Evaluation version included).
- The PDF version record (readable and printable with Acrobat Reader software).
- **The full** product **3D modelling** in its various configurations with SolidWorks, Parasolid and eDrawings **3D files** format.

This record and the CDRom may be duplicated for college student internal use*


Copying or diffusion, by any means whatsoever, for institution's internal use only, of all or part of the record or the CDRom, aren't allowed without A4 Company approval.

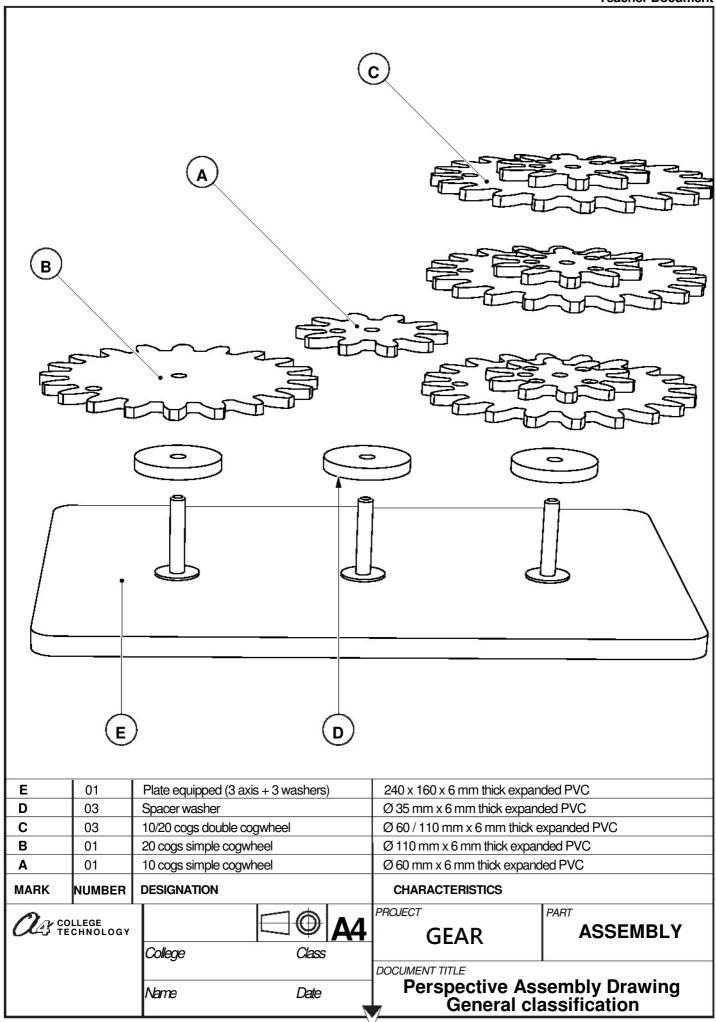
^{*}Duplication of this record is allowed in schools without quantity limitation, to education purposes only, with the condition to name the publisher: A4 Company. Copying or diffusion by any means whatsoever for commercial purposes is forbidden without the A4 company approval.

Overview - Preparation of the test stand delivered as a kit


1- Plate Mounting

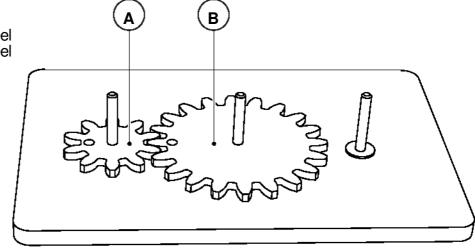
Stick the 3 rods on the base Stick the 3 washers on the base

2 - Double cogwheels assembly


Assemble the 2 cogwheels with the 4 screws 3 x 6.5 Align marks

3 – Using the test stand

This equipment allows to easily testing different gears configurations.

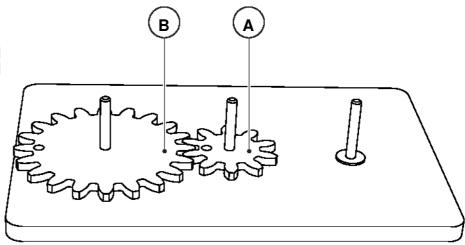

We propose the following pages some exercises to realize various ratio movement multipliers or reducers.

ASSEMBLY#1

Parts needed:

1: 10 cogs **A** simple cogwheel 1: 20 cogs **B** simple cogwheel

Turn the **A** cogwheel one direction of rotation and note on the drawing the direction of rotation of the **A**, **B** cogwheels, with an arrow.


A 1 turn = **B** turns **A** 2 turns = **B**..... turns

Conclusion:

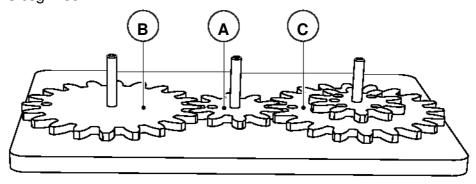
ASSEMBLY#2

Parts needed:

1: 10 cogs simple **A** cogwheel 1: 20 cogs simple **B** cogwheel

Turn the ${\bf B}$ cogwheel one direction of rotation and note on the drawing the direction of rotation of the ${\bf B}$, ${\bf A}$ cogwheels, with an arrow.

В	1 turn = A	turns
---	-------------------	-------


Conclusion:	 	

ASSEMBLY#3

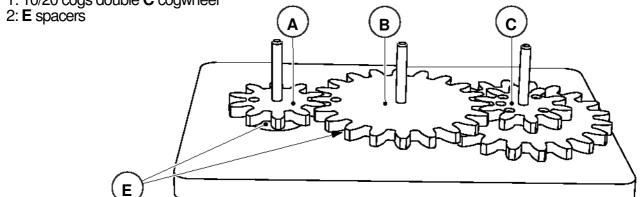
Parts needed:

1: 10 cogs simple A cogwheel

1: 20 cogs simple **B** cogwheel 1: 10/20 cogs double **C** cogwheel

Turn the **B** cogwheel one direction of rotation and note on the drawing the direction of rotation of the **B**, **A**, **C** cogwheels, with an arrow.

B 1 turn = **A**...... turns = **C**..... turns


Conclusion:

ASSEMBLY#4

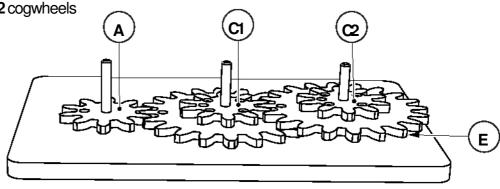
Parts needed:

1: 10 cogs simple **A** cogwheel

1: 20 cogs simple **B** cogwheel 1: 10/20 cogs double **C** cogwheel

Turn the **A** cogwheel one direction of rotation and note on the drawing the direction of rotation of the **A**, **B**, **C** cogwheels, with an arrow.

A 1 turn = **B**...... turns = **C**..... turns


ASSEMBLY #5

Parts needed:

1: 10 cogs simple A cogwheel

Turn the A cogwheel one direction of rotation and note on the drawing the direction of rotation of the A, C1, C2 cogwheels, with an arrow.

A 1 turn = **C1**...... turns = **C2**..... turns

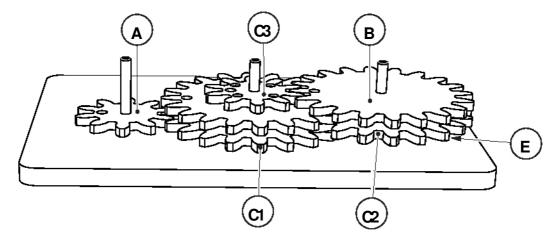
Conc	lusion	

ASSEMBLY#6

Parts needed:

- 1:10 cogs simple A cogwheel
- 1: 20 cogs simple **B** cogwheel 2: 10/20 cogs double **C1 C2** cogwheels

1 E spacer


Turn the A cogwheel one direction of rotation and note on the drawing the direction of rotation of the A, C1, C2, B cogwheels, with an arrow.

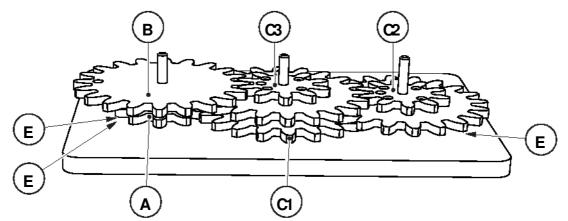
A 1 turn = **C1**...... turns = **C2**...... turns = **B**...... turns

ASSEMBLY #7

Parts needed:

- 1: 10 cogs simple A cogwheel
- 1: 20 cogs simple **B** cogwheel
- 3: 10/20 cogs double **C1**, **C2**, **C3** cogwheels
- 1: E spacer

Turn the **A** cogwheel one direction of rotation and note on the drawing the direction of rotation of the **A**, **C1**, **C2**, **C3**, **B** cogwheels, with an arrow.

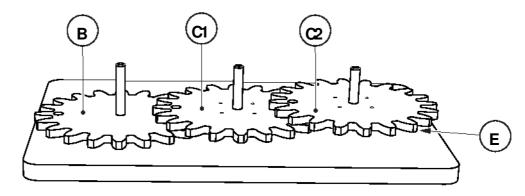

A 1 turn = **C1**...... turns = **C2**...... turns = **B**..... turns

Conclusion:	

ASSEMBLY #7a

Parts needed:

- 1: 10 cogs simple **A** cogwheel
- 1: 20 cogs simple **B** cogwheel
- 3: 10/20 cogs double **C1, C2, C3** cogwheels
- 3: E spacers


ASSEMBLY#8

Parts needed:

1: 20 cogs simple B cogwheel

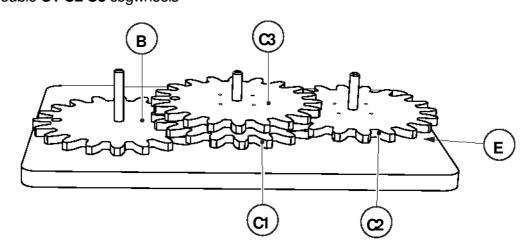
2: 10/20 cogs double C1 C2 cogwheels

1: E spacer

Turn the **B** cogwheel one direction of rotation and note on the drawing the direction of rotation of the **B**, **C1**, **C2** cogwheels, with an arrow.

B 1 turn = **C1**..... turns = **C2**..... turns

Conclusion:


ASSEMBLY#9

Parts needed:

1: 20 cogs simple **B** cogwheel

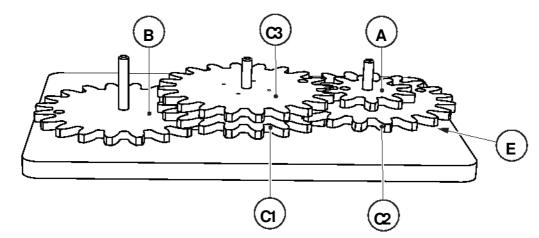
3: 10/20 cogs double C1 C2 C3 cogwheels

1: E spacer

Turn the **B** cogwheel one direction of rotation and note on the drawing the direction of rotation of the **B**, **C1**, **C2**, **C3** cogwheels, with an arrow.

B 1 turn = **C1**...... turns = **C2**..... turns = **C3**..... turns

ASSEMBLY #10


Parts needed:

1: 10 cogs simple A cogwheel

1: 20 cogs simple B cogwheel

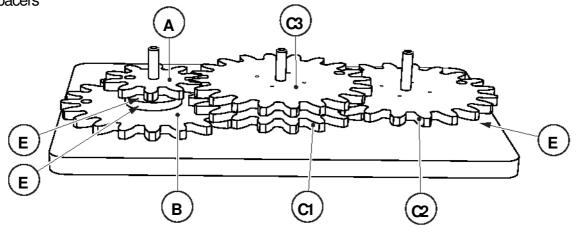
3: 10/20 cogs double C1, C2, C3 cogwheels

1 E spacer

Turn the **B** cogwheel one direction of rotation and note on the drawing the direction of rotation of the **C1**, **C2**, **C3**, **A** cogwheels, with an arrow.

B 1 turn = **C1**...... turns = **C2**...... turns = **A**..... turns

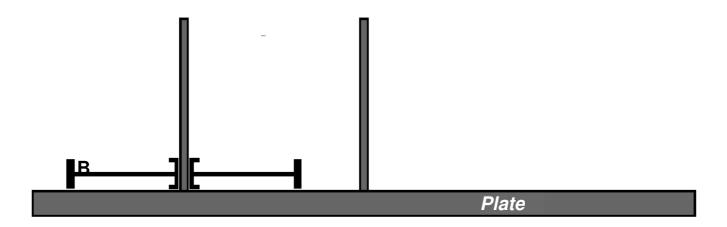
Conclusion:


ASSEMBLY # 10 a

Parts needed:

1: 10 cogs simple **A** cogwheel 1: 20 cogs simple **B** cogwheel

3: 10/20 cogs double C1, C2, C3 cogwheels


3: E spacers

ASSEMBLY #11

Using all cogwheels, make a 16 times multiplier with only two axis of the plate.

Complete the gear diagram.

\bigcirc	JES1	\Box	NIC
w	JEOI		\mathbf{c}

- Write a gear definition:	
- Write some technical objects inc	sluding a gear:
- Complete equality: (B wheel makes 1 turn)	Berlys B
A cogs number x A turns number	oer = B cogs number x B turns number
······ X······ =····· X······	
- What means the gear reducer ra	atio (or multiplier ratio) ?

GEAR Teacher Document

Exercises on the gear test stand - CORRECTING

Page 03

- ASSEMBLY #1

A 1 turn = **B** 1/2 turn \mathbf{A} 2 turns = \mathbf{B} 1 turn

Conclusion: this gear allows dividing by 2 the rotation frequency.

- ASSEMBLY # 2 **B** 1 turn = \mathbf{A} 2 turns.

Conclusion: this gear allows multiplying by 2 the rotation frequency.

Page 04

- ASSEMBLY #3

B 1 turn = \mathbf{A} 2 turns = \mathbf{C} 1 turn.

Conclusion: this gear doesn't reduce or increase the rotation frequency.

B and C rotation direction are identical. This gear allows motion transmission without any speed and rotation sens modification.

- ASSEMBLY #4

A 1 turn = B 1/2 turn = C 1 turn.

Conclusion: this gear doesn't reduce or increase the rotation frequency.

A and C rotation direction are identical. This gear allows motion transmission without any speed and rotation direction modification. **Page 05**

- ASSEMBLY #5 A 1 turn = C1 1/2 turn = C2 1/4 turn.

Conclusion: this gear is dividing by 4 the rotation frequency.

- ASSEMBLY #6

A 1 turn = C1 1/2 turn = C2 1/4 turn = B 1/8 turn.

Conclusion: this gear is dividing by 8 the rotation frequency.

Page 06

- ASSEMBLY #7

A 1 turn = C1 1/2 turn = C2 1/4 turn. = C3 1/8 turn = B 1/16 turn **Conclusion**: this gear is dividing by 16 the rotation frequency.

ASSEMBLY #7a

Conclusion: this gear is dividing by 16 the rotation frequency.

B wheel is no longer on the same axis as in assembly #7 but is still driven by the same C3 small wheel.

Page 07

- ASSEMBLY#8

B 1 turn = C1 2 turns = C2 4 turns.

Conclusion: this gear is multiplying by 4 the rotation frequency.

- ASSEMBLY#9

B 1 turn = C1 2 turns = C2 4 turns = C3 8 turns.

Conclusion: this gear is multiplying by 8 the rotation frequency.

AŠSEMBLY # 10


B 1 turn = C1 2 turns = C2 4 turns = C3 8 turns = A 16 turns. **Conclusion**: this gear is multiplying by 16 the rotation frequency.

- ASSEMBLY # 10 a

B 1 turn = C1 2 turns = C2 4 turns = C3 8 turns = A 16 turns. **Conclusion**: this gear is multiplying by 16 the rotation frequency.

A wheel is no longer on the same axis as in assembly #10 but is still driven by the same C3 big wheel.

Page 9
- ASSEMBLY # 11

- Definition of a gear:

Set of cogwheels that engage with each other to transmit motion.

Articles with a gear :

Photocopiers, vehicle gearboxes, mechanical toys and models of vehicle, salad spinner, power tools, clock movements, crank flashlight, ...

- **Equality**: $10 \times 2 = 20 \times 1$

- Reduction ratio: it's the relationship between the leader wheel turns number and the driven wheel turns number (between the first and the last cogwheels of the gear).

10 www.a4.fr